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We shall consider the problem of decay of a linear system with delay

dz (t)
dt

= Az (t) + Gz (t — 1) + bu 1$))]

which muat, by means of the control u = u (2}, be transferred from the given initial state
z (1) = 2°(t) (—7 < t<X0) to the equilibrium state s (1)) =0 (T — v <<t 7).

We shall limit ourselves to the simplest case when x is a two-dimensional vector, u is
a scalar, 4 and G are constant matrices, b is a constant vector and T = 37 {7 = const).
In this case our problem has an elementary solation.

The most interesting situation is obtained, when the matrix G is nonsingular and
vecter b is not its characteristic vector, i.e. when the condition of the generality of
position {1] is fulfilled. We shall investigate this case. Let vector ¢ be a solation of the
equation Gc= b. Vectors ¢ and b are, by definition, not colinear. Consequently, they can
be regarded as base vectors on the plane {x,, x,} and we have ¢ = {1,0}, 5 = {0,1]. In these
coordinates matrix G has the form
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Function u (¢) will be a solution to our problem if and only if
(2)
. bu (8) + Gz (t — 1) = 0 (T —1<t< T
22 (1) = 0 (T —2v<t<T—1) (3
das (t
_jti)_ =em() ful—1)Fgmnl—0) tu@) =0 (T—20<i<T—1) (4
dx1 (?)
i mam () b=t n(T—7) = T=2<iST—7) 4

Conditions (4) and (2) together define u () completely when t > 7, condition (3)
however must also be fulfilled, which means that (2) in this case,is,u{) =~ x, (t = 7)
(T ~ 7Lt £ TY. In order to find u (#) from (3} and (5) when 0 < ¢ < 7, we make use of
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where xi}. {t, ;) are the elements of the fundamental matrix X {¢, %] of the system
dx/dt = Ax, while y, and ¥, are found from the initial function x°(8.
Transformation of the second equation of (6) yields
Shi(ﬁ)u(ﬁ)fh‘):wi (i=1,2)
0 ™

h(®) = (v, ), e (0) = | D (€, ) s (3, )
&

Equations (7) will have a solution u (&) for any ¥, and y, if and only if the function
hy (8) and b, (®) are linearly independent [2]. Last condition is fulfilled whenever the
condition of the generality of position is fulfilled for 4 and b, i.e. whenever the vector b
is not a characteristic vector of the matrix 4. Determination of 4 (¢} from (7) can be per-
formed, using well known methods (see eg. [2]).
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