CONTROL OF AN OBJECT WITH DELAY

(OB UPRAVLENII OB'EKTOM S POSLEDEISTVIEM)

PMM Vol. 30, No. 5, 1966, p. 938
N.N. KRASOVSKII
(Sverdlovsk)
(Received March 27, 1966)

We shall consider the problem of decay of a linear system with delay

$$
\begin{equation*}
\frac{d x(t)}{d t}=A x(t)+G x(t-\tau)+b u \tag{1}
\end{equation*}
$$

which must, by means of the control $u=u(t)$, be transferred from the given initial state $x(t)=x^{\circ}(t)(-\tau \leqslant t \leqslant 0)$ to the equilibrium state $x(t) \equiv 0(T-\tau \leqslant t \leqslant T)$.

We shall limit ourselves to the simplest case when x is a two-dimensional vector, u is a scalar, A and G are constant matrices, b is a constant vector and $T=3 \tau$ ($\tau=$ const). In this case our problem has an elementary solution.

The most interesting situation is obtained, when the matrix G is nonsingular and vector b is not its characteristic vector, i.e. when the condition of the generality of position [1] is fulfilled. We shall investigate this case. Let vector c be a solution of the equation $G c=b$. Vectors c and b are, by definition, not colinear. Consequently, they can be regarded as base vectors on the plane $\left\{x_{1}, x_{2}\right\}$ and we have $c=\{1,0\}, b=\{0,1\}$. In these coordinates matrix G has the form

$$
G=\left(\begin{array}{ll}
0 & g_{12} \tag{1.1}\\
1 & g_{22}
\end{array}\right), \quad g_{12} \neq 0
$$

Function $u(t)$ will be a solation to onr problem if and only if

$$
\begin{align*}
& b u(t)+G x(t-\tau)=0 \quad(T-\tau \leqslant t \leqslant T) \tag{2}\\
& x_{2}(t)=0 \quad(T-2 \tau \leqslant t \leqslant T-\tau) \tag{3}\\
& \frac{d x_{2}(t)}{d t}=a_{21} x_{1}(t)+x_{1}(t-\tau)+g_{22} x_{2}(t-\tau)+u(t)=0 \quad(T-2 \tau \leqslant t \leqslant T-\tau) \tag{4}\\
& \frac{d x_{1}(t)}{d t}=a_{11} x_{1}(t)+g_{12} x_{2}(t-\tau), \quad x_{1}(T-\tau)=0 \quad(T-2 \tau \leqslant t \leqslant T-\tau) \tag{5}
\end{align*}
$$

Conditions (4) and (2) together define $u(t)$ completely when $t \geqslant \tau$, condition (3) however must also be fulfilled, which means that (2) in this case, is, $u(t)=-x_{1}(t-\tau)$ ($T-\tau \leqslant t \leqslant T$). In order to find $u(t)$ from (3) and (5) when $0 \leqslant t<\tau$, we make use of

$$
\begin{gather*}
\int_{0}^{\tau} x_{22}(\tau, 0) u(0) d 0=\gamma \tag{6}\\
\left.e^{n_{11} \tau} \int_{0}^{\tau} x_{12}(\tau, \vartheta) u(v) / \ell\right\}+\int_{i} \int_{12} e^{a_{11}(-\cdots)}\left[\int_{i}^{\zeta} x_{22}(\zeta, \vartheta) u(v) d v\right] d \zeta=\gamma
\end{gather*}
$$

where $x_{i j}\left(t, t_{0}\right)$ are the elements of the fuadamental matrix $X\left[t, t_{0}\right]$ of the system $d x / d t=A x$, while γ_{1} and γ_{2} are found from the initial function $x^{\circ}(t)$.

Transformation of the second equation of (6) yields

$$
\begin{align*}
& \int_{0}^{\bar{i}} h_{i}(\vartheta) u(\vartheta) d \vartheta=\gamma_{i} \quad(i=1,2) \\
& h_{1}(\hat{v})=x_{22}(\tau, v), \quad h_{2}(v)=g_{12} \int_{\hat{v}}^{\tilde{0}} e^{a_{11}(\tau-\zeta)} x_{22}(\xi, v) d \zeta+e^{a_{11} \tau} x_{12}(\tau, \hat{v}) \tag{7}
\end{align*}
$$

Equations (7) will have a solution $u(\vartheta)$ for any γ_{1} and γ_{2} if and only if the function $h_{1}(\vartheta)$ and $h_{2}(\vartheta)$ are linearly independent [2]. Last condition is fulfilled whenever the condition of the generality of position is fulfilled for A and b, i.e. whenever the vector b is not a characteristic vector of the matrix A. Determination of u (t) from (7) can be per formed, using well known methode (see eg. [2]).

BIBLIOGRAPHY

1. Pontriagin L.S., Boltianskii, V.G., Gamrelidze R.V. and Mishchenko E.F., Matematicheskaia teoriia optimal'nykh processov (Mathematical Theory of Optimal Processes). Fizmatgix, 1961, English transl. Pergamon Press, 1964.
2. Krasovskii N.N., Ob odnoi zadache optimal'nogo regulirovaniia (On a problem of optimal control). PMM Vol. 21, No. 5, 1957.
